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ABSTRACT 

In order to study the propagation of pressure waves in the semicircular 
canals, a single canal is modeled as an elastic toroid located inside a rigid 
toroidal channel. The elastic toroid is filled with incompressible, inviscid 
fluid, and similar fluid fills the space between the elastic toroid and the rigid 

channel. 
First, the system is studied using the potential flow equations to describe 

the motion of the fluids, and the membrane equation to describe the behavior of 
the elastic toroid. It is found that the equations of motion can be solved only by 
a great volume of numerical computation, an effort probably unwarranted since 
there is as yet no confirmation of the assumptions incorporated in the equations. 

Therefore it has been decided to formulate the problem in a more 
approximate manner, so that solutions could be obtained with less numerical 
effort. The classical Moens-Korteweg equation for pressure wave propagation 
in a straight circular cylinder is extended to the fluid-filled and immersed elastic 
toroid inside a rigid toroidal channel. The solutions (wave speeds and mode 
shapes as a function of frequency) are easily obtained. There is a nondispersive 
mode, corresponding to the breathing motion in a straight cylinder, and a linearly 
dispersive mode, involving mainly flexure of the tube axis in its own plane. 
Experiments show, however, that these results are inadequate, and more accu- 
rate equations of motion are required. 

The Moens-Korteweg equations are improved by considering the effects 
of the mass of the elastic shell and by retaining the shear behavior in the 
equations of motion. With these refinements, a third mode appears, and the 
other two modes are significantly changed. The flexural mode is still normally 
dispersive, but is no longer linearly so. The breathing mode is anomalously 
dispersive at low frequencies but remains nondispersive at higher frequencies. 
The third mode, which is at the highest speed, consists mainly of extensional 
deformations of the elastic shell. It is nondispersive above low frequencies. 

Mode shapes are worked out as functions of the geometric parameters 
of the toroids. It is found that in-plane motion of the tube axis dominates the 
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flexural modes, changes in the cross-sectional diameter of the Mbe and motion 
of the fluid dominate the breathing mode, and axial displacement of the tube 
wall dominates the extensional mode. 

Experimental data is available for wave speeds in a fluid-filled toroidal 
shell without the exterior fluid or rigid channel. Comparison with the present 
theory for the same configuration confirms the general shape of all three modes, 
and agrees with the numerical values to 20%, often to better than 10%. 

Some of the findings of this study are expected to be useful in a theoretical 
analysis of the wave transmission properties of the aortic arch and of its effects 
on the shape of the natural pulse wave generated by the heart. 
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I. INTRODUCTION 

Engineering analyses of the human physiology are important for at 
least two reasons. First, the foreign environment of space flight subjects the 
human organism to conditions unprecedented and in many cases impossible to 
simulate on the surface of the earth. The prediction of man's response would 
be aided by a deeper, quantitative understanding of the fundamental principles 
of operation of the various organs than is provided by clinical and other qualita- 
tive approaches. Second, and perhaps more important, is the necessity for 
developing accurate mathematical models of organ .functions, not only for 
diagnosis and treatment but also for the design of artificial organs. 

This investigation is concerned with some aspects of the mechanical 
behavior of the semicircular canals, the portions of the vestibular apparatus, 
in the inner ear of higher vertebrates, which are the end organs responsible for 
the sensation of angular accelerations. By way of introduction, the anatomy 
and physiology of the human semicircular canals will be very briefly outlined, 
previous studies of their dynamics will be mentioned, and the goals and objec- 
tives of this study will be set forth. 

A. Anatomy and Physiology 
The inner ear contains the cochlea, a hearing receptor, and the 

vestibular apparatus, a sensor for linear and angular accelerations (Figs. 1-1 to 
1-6). It is known that the vestibular apparatus is sensitive to low-frequency 
motions while the cochlea responds to high frequency signals. However, it has 
not yet been established whether this behavior is due to the mechanical and 
physical properties of the end organs or to the characteristics of the sensory 
nerves and the central nervous system. 

There are three semicircular canals in each ear, lying approximately 
in mutually orthogonal planes. Each is actually more nearly three-quarters of 
a circle. The remaining quarter circle includes the ampulla and a portion of the 
utricle. The ampulla has a larger cross section than the canal itself and con- 
tains the sensory nerve cells. The utricle connects through a very small duct 
with the saccule, which in turn joins the cochlea through another small channel. 
All these structures are made of a membranous material and are filled with a 
fluid called endolymph. 
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The entire membranous structure is suspended inside a similarly- 
shaped fluid-filled charnel in the temporal bone of the skull. The fluid between 
the membrane and the bone is referred to as perilymph. 

Each of the canals and its ampulla constitutes an angular acceleration 
sensor. The canals are made up of membranous and bony canals, perilymph, 
and endolymph. The ampulla contains a gelatinous protrusion called the cupula, 
which is attached at its base to the crista containing the sensory hairs. These 
hairs emerge from nerve cells which discharge at a rate depending on the 
deflection of the hair cells from their undisturbed position. 

Qualitatively, the operation of the canals is easily explained. An 
angular acceleration of the head forces the membranous canal, which is attached 
to the bone by thread-like fibers, to accelerate in similar fashion. If the angular 
acceleration vector has a component perpendicular to the plane of any particular 
canal, the fluid's inertia will cause its motion to lag behind that of the membran- 
ous and bony material. This relative motion of the fluid with respect to the head 
deflects the cupula and its hair cells and changes the rate of firing of the nerve 
cells, which is interpreted as angular acceleration. Since there are three canals 
in mutually near-perpendicular planes any angular acceleration vector direction 
in space can be detected. 

It should be mentioned that, with current techniques, direct measure- 
ment of the fluid motions or nerve firing rates in humans is impossible. Experi- 
menters must use indirect methods, such as asking the subject whether he feels 
any angular acceleration, or measuring nystagmus, the involuntary eye motions 
associated with sensed angular velocity. Thus the canal response is filtered 
through the central nervous system and perhaps some output nerves and muscles 
(Fig. 1-7) before it can be measured. 
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B. Previous Work 

1930(1°). 

responded like overdamped torsion pendula to angular accelerations. That is, 
the canals' response to an angular acceleration step was the sum of two damped 
exponentials, with initial amplitudes such as to match the initial conditions of 
the problem. Empirical determination of coefficients produced a good f i t  to the 
general behavior of nystagmus or subjective sensation of angular acceleration, 
but there are obvious drawbacks to this approach. The model represents the 
entire system, consisting of the canals, cupula, sensory neurons, neural paths, 
central nervous system, and muscles of the eye. It is obviously oversimplified 
and somewhat empirical, and therefore can hardly be expected to give insight 
into the basic physical processes taking place in the end organ. 

Studies of the dynamics of the semicircular canals date from about 
Early work, and until recently all work, assumed that the canals 

Recently Steer@)has performed an engineering analysis of the mechani- 
cal behavior of the semicircular canals. He solved the Navier-Stokes equations 
for the *flow of the endolymph assuming that the membranous canals behave like 
perfect rigid toroids. He also approximated the effects of the ampulla on the 
dynamic response of the canals. The results of Steer's approximate analysis 
also suggest that the cupula-endolymph system behaves like a damped torsion 
pendulum. 

C. Goals and Objectives 

understanding of the mechanical behavior of the semicircular canals , represented 
by the first block in Figure 1-7. Our analysis is based on a mathematical model 
which takes into account the elasticity of the membranous canals but neglects the 
effects of the viscosity of the labyrinthine fluids. As such it is the first attempt 
to analyze the interaction of endolymph, perilymph, and an elastic membranous 
canal wall. 

The present investigation is a part of a continuing effort to achieve an 

For a number of different theoretical models, the free vibrations and 
wave transmission characteristics of the semicircular canals are studied by 
deriving and solving the corresponding linearized equations of motion. 

First, the basic solutions to the potential flow equations in terms of 
toroidal coordinates are reviewed. In order to satisfy the boundary conditions, 
it is found that for each eigenvibration the mode shapes must be expressed as an 
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infinite series of the basic potential flow solutions. The determination of natural 
frequencies and mode shapes in this situation requires a massive numerical 
effort which is not warranted at present in view of the uncertainties about the 
validity of the basic assumptions. 

distension waves in straight elastic cylinders is adapted to toroids. The equa- 
tions are  derived and solved, but on the basis of simple experiments the results 
were found to be inaccurate. 

Next, the classical Moens-Korteweg equation for the propagation of 

Finally, the Moens-Korteweg approach is replaced by a more refined 
engineering analysis, whose results are in reasonably good agreement with 
experimental data obtained from laboratory models. 

presence of the ampulla, the nature of the suspension of the membranous canal 
in the bony canal, and by the interaction among the three canals and the utricle. 

Yet to be considered are the effects produced by fluid viscosity, the 
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11. POTENTIAL FLOW ANALYSIS 

One semicircular canal, not including the ampulla or any portion of the 
utricle, is approximated as a toroidal elastic membrane inside a rigid toroidal 
wall (for the moment we ignore the question of whether one toroid is centered 
inside the other). The fluid inside the membrane (endolymph) is referred to as 
the inner fluid; that between the membrane and the wall (perilymph) is the outer 
fluid. The two fluids are assumed to be incompressible and inviscid, but may 
have different densities. 

The attempted method of solution is analogous to the linearized theory 
used in Ref. 1. For irrotational flow the motions of the fluids are governed by 
the Laplace equation for the velocity potentials of the fluids. The motions also 
must be compatible with the kinematic boundary conditions requiring the fluid 
velocity to match the membrane or wall velocity at the interfaces. The dynamic 
boundary condition to be satisfied is simply the equation of motion of the mem- 
brane. By linearizing the Euler equation the fluid pressure can be written as a 
function of the velocity potential. 

Next the known solutions to the Laplace equations in the appropriate 
coordinates are given and some of the free parameters of the solutions are 
determined by satisfying the kinematic boundary conditions. Presumably there 
are an infinity of such solutions, which are the velocity potentials corresponding 
to the possible modes of fluid motion. These solutions define a class of membrane 
motions and pressure variations which, in general, are only compatible with the 
dynamic boundary conditions for certain frequencies at a given wavelength. 

A. Equations of Motion 

Fig. 2-1. Toroidal Membrane Inside Rigid Toroidal Channel 
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The tube radii of the elastic toroidal membrane and the rigid channel 
are a and 
inner and outer fluids; pi and ye are their densities. 4, is the density 
of the membrane material and h its thickness. w is the displacement of 
the membrane normal to its equilibrium surface (positive outward). p _and 
are the velocity potentials of the interior and exterior fluids. 

the two fluids, div v = 0 . With 3 = V * for the inner fluid and V q  for the 
outer fluid, the continuity equations assume the classical form 

respectively. pi and pe represent the pressures of the 

The two equations of fluid motion are simply the continuity equations for 
-L 

v 2 +  = o  
v2q =o  

The kinematic boundary condition at the rigid wall is 

0 

where G,, is the outward normal to the surface. At the membrane, 

Here, as part of the linearization process, the boundary condition is enforced at 
the undeformed surface, r = a, instead af at r = a + w; the normal direction 
is also assumed to vary insignificantly as w changes. 

The dynamic boundary condition is the membrane equation: 
a2 w + -  '' + ywh - T; 

R, 
H e r e  R1 and R2 are the principal radii of curvature at any point on the mem- 
brane; T1 and T2 are the tensions (stress x thickness) at that point in the 
R1 and R2 directions. Ap is the pressure difference pi - pe at that point. 
The pressures are evaluated from the linearized Euler equations 

pio and peo are the equilibrium inside and outside pressures. 
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B. Coordinate Systems 

with respect to each other. Two different systems are considered. 
We must now specify exactly how the elastic and rigid toroids are located 

In concentric coordinates, the toroid of radius a is centered within the 
toroid of radius T ; this system is convenient for differential geometry. In non- 
concentric coordinates the smaller toroid is not centered within the larger one; the 
Laplace equation has a known solution in this system. 

1. Concentric Coordinates 

' x  

t 

Y 

Fig. 2-3. Cross-section 
of Toroid 

Fig. 2-2. Concentric Coordinate 
System 

The curvilinear axis on which the cross-sections are centered is a circle 
in the xy plane with its center at the origin and with radius R (R is referred to 
as the ring radius). The cross-sections of fie toroids are independent of 8 and 
have radii a and ;v' (these are referred to as the tube radii). (See Fig. 2-2.) 
The angles 9 and 8 are defined in Fig. 2-3. Displacement components of a 
point on the surface of the toroid are u (in the 8 direction), v (in the 9 direc- 
tion), and w (radially outward from the center of the cross-section). These 
displacements are functions of 8 and . 

The coordinates of any point on the shell, when u = v = w = 0, are 
x = Rcos8  + a s i n +  cos8  
y = R s i n 8  + a sin# sin 8 

z = a cos + 
for the inner shell. Replace a with 2" for the outer shell. 

14 



When displacements are permitted, 
x = R c o s 8  + a s i n #  cos8 + w  sin4 
y = R s i n 8  + a s i n $  sin8 +ws in+  
z = a cos4 + w cos+ - v s in9  

COS@ + V C O S +  cos8  -us in8  
s in8  + v c o s +  sine + u c o s e  

2. Nonconcentric Coordinates 

x I d  
Fig. 2-4. 

Nonconc ent ric Coordinate 
System 

Fig. 2-5. 
Cross-section 

of Torus 

A toroidal surface is defined by ,u = constant in the equations 

d s i n h p  c o s 8  d s i n h p  sin8 d sinq 

cash? - COS 2 

8 = const, the surfaces 

% =  E =  ’‘ c o s h p  - cos2 cos h p  - cos ‘2 

With 
by the Z axis and 
finally vanish at a point a distance d 
circles grow without limit and their centers move infinitely far away from 
the Z axis. In general, each circle is centered at a distance d e o t h p  and 
has radius d ~ t i c h p  . 

intersect each of the 
through the point representing p-+- 00.  

,u = const and ’2 = const form families of mutually orthogonal circles. 

In these coordinates, the previously defined displacement components u, v, and w 
are in the directions of increasing 8 , increasing 2 , and decreasing /” 
respectively (Fig. 2 -6). 

/c” = const are circles in the plane determined 
As ,u-+c- , the circles become smaller and 8 = const. 

from the Z axis. As ,U -0 , the 

The surfaces = const are spheres centered on the Z axis. They 
= const surfaces at right angles, and so must pass 

Projected onto a 8 = const plane, 
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a n t  

Fig. 2-6. 

Curves of Constant 
Parameters 

C . Differential Geometry of Deformed Torus 
The membrane equation (Eq. 2-1) involves R1 and R2, the principal 

radii of curvature of the membrane. This section investigates the determination 
of these quantities for a toroidal surface in concentric coordinates. 

1. General Equations (Ref. 4) 
Let the equation of a point on the surface be 

where u1 and 3 are the two coordinate quantities on the surface and ex, 5, 
and ifz are  unit vectors in the Cartesian x, y, and z directions. For example, 
for the toroid in its equilibrium state: 

fl = R c o s 0  + a s i n 4  cos8  
f2 = R s i n 8  + a s i n +  s in8 
f3 = a c o s b  
u1 = + ,  9 = e 
Letting the curvatures Kp be the reciprocals of the radii Rn (n = 1,2), 

the principal curvatures at any point on the surface are the roots of 

< - 2HK,+K = 0 (2-9) 

The quantities K and H are called the Gaussian and mean curvatures and are 
2 

n 
b l l  b22 - 0012) K =  

16 



The bij and gij are defined from 3? and its derivatives, using the unit 

Clearly bij = bji and gij = gji 

(ul = const and u2 = const) are lines of principal curvature. In this case, 
the roots of Eq. (2-9) are 

Tf and only if b12 = g12 = 0, the coordinate curves in the surface 

2. Toroid in Equilibrium Condition 
Let us determine the radii of curvature of a toroid in concentric 

coordinates with u = v = w = 0 

17 



The coordinate directions are principal directions and 

K , r  -i - 1 in the + direction a 
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3. Toroidwith u = v = O  and w = w ( @ )  

This surface has circular cross-section at all points, with radius a + w 
and with the circle centered on the original axis (in the z = 0 plane a distance R 

from the origin). 

L Fig. 2-8. 
Sketch of w = w (e) 

Using the notation w1 = dw/d@ , w" = d2w/de2 we can write 

-=  a.i; [ - ( R + a s i n +  + w e i n + )  sin6 + w's ind ,cos63  zx ae 
4- [ ( R + a s i n +  + w s i n + ) e o s e  c w ' s i n 4 c i n 8 1  2, + W ' C O S +  s, 
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b,, = 0 

N - sin4 4- W *  3: 
if(,= - s i n 4  

€?,a R+<a+w)cin+ CR + <a + w) sin 91 R + Ca+ w) sin + 
These values can be rewritten in the nonconcentric toroidal coordinates by 
using the transformations given in section B: 

1 K , =  - -  a t w  

It would be possible to derive curvatures for other types of deformation, 
most importantly for w as a function of 9 and 8 ; but the algebra becomes 
extremely involved when the coordinate curves are no longer lines of principal 
curvature. Further, the membrane equation then becomes much more compli- 
cated and the solution of Laplace's equation more difficult. 
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D. The Membrane Equation 
We next derive expressions for the principal tensions T1 and T2 for 

the two cases whose differential geometry has been discussed: u = v = w = 0 

a n d u = v = O ,  w = w ( Q ) .  
The membrane equation was given in section A as: 

where 
pi = internal pressure 
pe = external pressure 
R1 R2 = principal radii of curvature 
T1, T2 = tensions (stress x thickness) in these directions 
p = membrane density 
h = membranethickness 
w = membrane displacement (normal to surface) 

1. Equilibrium Configuration 
In the equilibrium configuration (w = 0) we have 

(2-10) 

where the curvatures K are the reciprocals of the radii R. 
From section C y  K1 (in the + direction) is - l /a,  and K2 (in the 8 

direction) is - sin 9 / (R + a sin 4, ) and therefore 
T2 sin 9 - T1 

Pi -Pe  - -- a - R + a  sin + 
At (p = 0 or m' , we have sin 9 = 0 and T1 = -"(pi - pe). It is now clear 
that the sign convention in the membrane equation is the reverse of the one used 
in the differential geometry derivation. We will  therefore reverse the signs on 
K1 and $ from section C: 

(2-11) 

We need one more equation to be able to solve for T1 and T2. This is 
obtained by formulating the equilibrium in the 9 direction of a small segment of 
shell. 
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Fig. 2-9. Illustration of Shell Segment 

First a portion of torus between 8 and 8 ,  is removed. Then the segment 
of this portion between 9 and 4 + dgb is isolated. TI and T2 vary with 9 ; 
neither varies with 8 . 
in general, not parallel. 

Note that the two sides on which T2 is acting are, 

Fig. 2-10. Equilibrium of Shell Segment 

Equilibrium in the + direction requires 

T,(+)ds,  - T, (++d+)ds=  + 2T&d.l!cosa O 

with d& = a d +  , dsl= ( R + a s i n +  ) d e  (sincethe dsl lineis a 
distance R + a sin+ from the z axis), ds2 = [ R  + a sin ( 9  + d +  ) ] d e  , 
and 

By using the relation 
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the equilibrium equation becomes, to first order, 

- - -  
d #  - R + a sin& 

1 R + a sin+ We isolate T2 from Eq. (2-11) as T2 = (AP -a) , and 
substitute into (2-12) to obtain 

which can be rewritten 

(2-12) 

(2-13) 

(2-14) 

This equation has the form of the classical first-order linear non-homogeneous 
differential equation (Ref. 6) 

dy + P(x)y dx = Q(x)dx 

whose solution is 

In the notation of Eq. (2-14), 

s p(x)dx 
e s i n + ( R +  a sin+) 

The solution of Eq. (2-14) is then 

T, -- & R + a s i n d  C 
2 sin+ + (R+ a s in+)  sin+ 

o r  
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The boundary condition, as before, is T1 ( + = 0 )  = aAp. 

This cannot be finite unless the term in the brackets is zero. Let us see 
what happens in this case ( c  = - Ap R2/2): 

Fortunately this meets the requirement that T1 ( 4, = 0 )  = aAp. 
substitute T1 back into Eq. (2-11) and solve for T2 , which turns out to be 
aAp/2. Differentiation and substitution of these results verifies both forms of 
the differential equation, (2-12) and (2-13). 

We can now 

In summary, in the equilibrium configuration, 

2. 
Stress and strain equations will be derived, by two independent methods, 

The first method simply involves substitution into the equations given in 

Deformed Toroid With u =  0 ,  v =  0 and w = w (  6 ) 

for a toroidal membrane with a displacement w which is a function of 8 only. 

Ref. 7 for stress and strain in orthogonal curvilinear coordinates: 

where: erj = strains 
ai are the three coordinates 
wi  are the displacements in the cxi directions a are the metric coefficients 

24 
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In this case 

(Radial, in the direction of a and 
w from the tube axis) 

Substitution of  the gii into the strain equations yields 

The stress-strain relations are 

is 1,2,3 is 
j =  1,2,3 

where: dij = stress 
E = Young's modulus, 5) = Poisson's ratio 

E> = € 1 ,  + Gz* + Gas 

These yield: 

E i + -  E * @  

\ E$@ 

0;' = (F+g) (L-2* ]  I+* Gr:i:+ 
Q;3 = (1+73)(1-22j 

Shear strains and stresses are neglected for a membrane. 
The strain-displacement relations can be derived in a somewhat more 

satis%ying way directly from geometry. 

25 



Consider the curve on the equilibrium toroid formed by 4 = const. This 
curve is a circle about the Z axis at z = a cos 4 
One surface containing this curve and the tube axis (z = 0, r = R) is a cone with 
its apex on the Z axis: 

with radius r = R + a sin ds . 

Fig. 2-11. Cone Based on Element of Toroid 

The apex half-angle of the cone is 4 ; the base width is R + a sin q5 . The 
slant height of the cone is then /30 = (R + a sin 9 )/ sin 4 ( + # 0) .  

the angle 9 is in a direction along one of the elements of the cone. Thus the length 
of the perturbed surface at the angle # can be computed by inspecting the cone. 

The advantage of drawing this cone is that the radial displacement w at 

Fig. 2-12 

Displacement Shown 
on Surface of Cone 

- R t a s i n d  + y--p0+ w - sin+ . 

x -p s i n + c o s 8  = (R + asin4 + w s i n + ) c o s 8  

y = /o sin+ssin@ = ( R +  a5in+ c w s i n + )  s i n e  

t s / o C O 5 4  = R c o + +  + ( a + w ) c o s +  

Since is considered constant, 

dx = - ( R c a sin (p + w sin+) sin 8 di3 + dw sin+cosB 

dy = ( R  + asin++ wsin+)cosBdB + d w s i n + r o s B  

dz = dw cos+ 

ds2= dx'+ dy'+ da2 = CR + (a+w)sin+]'dB'+ dw2 
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If w = 0, 

ds I ( R + a  e i n + ) d e  = ds. ds' - ( R +  a sin+)' d e 2  or  

If w is small, the binomial theorem gives 

The strain is, by definition 

With w and dw/d8 small, 

e,, 
radii a and a +  w. The difference, 2 d w  divided by the original value, 
2 n a  , gives G,, = /a. The strains are related to stresses as before. For 
a complete description, we must add in the equilibrium strains of section 1. 

Recalling that TI = q, h 

is easily calculated by comparing the circumferences of circles of 

W 

etc. 

W 
E h  + - -  e A p  2 R + a s i n +  E 9 h 8  

'' 2 R+acin+ + (L+P)(1-23) l c 3  P 

a h p ,  E V h O  E vvh sin4 
'2s 2 (i+9)(1.-29) + R + s r i n +  

w h e r e  o s  w ( R +  2. sin&) 
a (R+ a sin+) 

Again, these can be converted to the nonconcentric form if necessary. 

E. Solution of Laplace Equations in Toroidal Coordinates 
The fluid velocity potentials appear in at least three places in the system 

equations (2-1) to (2-8). First, the velocity potential appears explicitly in the 
Laplace equations V2 9 = 0 and V2 = 0. Second, the pressure difference 
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Ap is evaluated using the linearized Euler equation 

where V represents velocity potential and p fluid density. Using the sub- 
scripts i and e to represent fluid properties inside and outside the membrane 
respectively, we can evaluate Ap = pi - pe from 

and 

A P o  = pi0 .- p,, Then, with 

Third, the boundary conditions to be satisfied by the fluid flow can be given in 
terms of the velocity potential as: 

There is also an implicit boundary condition, that the velocity potential at the 
tube axis be finite: 

A solution to the Laplace equation exists in the nonconcentric coordinates 
introduced in section B2. According to Ref. 5, no solution is known in the con- 
centric coordinates defined in section B1. 

In the nonconcentric coordinates, solutions to V2 $' = 0 are of the 
form (Ref. 5) 

m,n = O , L , Z  ,... 
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Here f is an arbitrary function of t ; Am,, Bmn, 8 and 7 are 
arbitrary constants; and p,"- and QY-+ are associated Legendre poly- 
nomials, of the first and second kind respectively, of half integral order and 
integral degree. 

Any linear combination of the functions (P of Eq. (2-15) will satis@ 

t 

the Laplace equation. If possible, we would like to find values of the four free 
constants such that (3e satisfies the kinematic and dynamic boundary conditions. 

/"c 
the 

We 

The kinematic boundary conditions involve the derivative of H in the 
-L 

direction. The derivative normal to the membrane, V d U,, is ,  including 
system metric (Ref. 

oQ.*u', = 

find a+ - = s i n h p  

aP 

(2-16) 

where P' and Q' are the derivatives of the polynomials with respect to their 
arguments. 

It quickly becomes clear that a function of the type in Eq. (2-17) cannot, 
in general, 

For 
the term in 

satisfy a boundary condition such as 

instance, we might try to set Eq. (2-17) equal to zero by requiring 
each square bracket to be zero: 

m 
A m n  P n  - 

and, simultaneously, 
t r n  

Am, P n - +  
However, unless the determinant 

which in general is not true, there is no solution except A,, = Bmn = 0. 
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If we try to make the entire term in curly brackets equal zero, we find 

that the dependence on 7 , in the square roots, does not permit the selection 
of Am, and Bmn as constants. We then conclude that there is no non-trivial 
solution to V 9 zn = 0 if h is constituted as in Eq. (2-15). 

eigenfunction as an infinite sum of the fundamental solutions defined by Eq. (2-15). 

The coefficients of the terms of the sum are selected to satis@ the kinematic and 
dynamic boundary conditions. The amount of numerical work needed to carry 
through an approximate solution, and to develop the specific mode shapes, is 
enormous. 

Before attempting a solution of this type, we should remind ourselves 

I, “ P p  
This situation is not unprecedented (Ref. 2). We must express each 

that the validity of the results obtained depends directly on the justifiability of 
the assumptions made in the analysis. These assumptions have yet to be verified 
experimentally. 

An alternative to this extensive numerical effort would be to introduce 
simpli$ing assumptions which would allow us to obtain results without an 
excessive amount of computation. These results could then be checked against 
experiments, and the assumptions verified or modified as necessary. In this way 
we could gain some mathematical insight into the problem-natural frequencies, 
mode shapes, important parameters, etc. -without undue effort. 

This second approach was chosen, In the two succeeding chapters, 
approximate equations of motion are  derived and their solutions developed and 
compared with experiments. 
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III. MOENS-KORTEWEG TYPE APPROXIMATION 

A. Fluid-Filled Cylinder Model of Membranous Canal 
The first attempt at simplifying the problem was to adapt the Moens- 

Korteweg equation for straight cylinders to toroids. The derivation of the 
classical Moens-Korteweg equation follows. 

Fig. 3-1. Straight Circular Cylinder 

Let the fluid's density be f and its pressure p ; the wall is isotropic 
with elastic properties E and 2, , thickness h , and equilibrium radius a .  
The fluid displacement in the x direction is u ; the wall displacement in the 
R direction is w . ( r  E a f w). 

These assumptions are made: 
The velocity 
i. e. are constant across a cross-section. 
Motion is axisymmetric, i. e. the wall moves in the radial direction only, 
its displacement is a function only of x , and there is no torsional motion of 
the wall or fluid. 
Wall density is zero. 
The shell has no bending rigidity; shear is neglected. 
Pressure fluctuations are much greater than radius fluctuations, so 
rdp > > pdr ; and wavelengths are large, so aw/dx (4 1 . 
The contained fluid is incompressible and inviscid and, in equilibrium, at 
rest. 
All perturbations are small, so that the equations can be linearized. 
The cylinder is initially unstressed in the x-direction. 

a "/at and pressure depend only on the axial coordinate x , 

The derivation proceeds by utilizing Newton's Law, Hooke's Law, and 
the continuity equation for the system. 
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Fig. 3-2. Momentum Equation 

Force inxdirection= W r 2 ( x ) p ( x )  - n r ' ( % + d x )  p(x+dx) 

= ar2p - n ( r +  k d $ ( p + z  a x  d x ) ~ - ~ t ~ 2 p r ~ d x + r ~ ~ d ~ ]  dX 

By assumption (5), this becomes 

The mass of the element of fluid 
so 

or 

- nr' ?E dx = 
ax 

?E, ax 

is 

d X  

nry dx ; its acceleration is acu/at.' ; 

Equilibrium for a half-cylindrical section requires 

Fig. 3-3 
Equilibrium of 
a Half Section 

2 r p = 2 v h 

Hooke's Law gives Q = C: E so 

( d = stress in shell wall) 

r p  = h e €  r - a  W - - -  nr - 2 ~ a  
2 ?Tal a - a  € =  

d ( r p )  = r d p  + p d r  C r d p  a h E d e  = h E 
Then, differentiating with respect to time, 
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The continuity equation relates the inflow of mass to the change in 
volume. Since the fluid is incompressible, the volume inflow of fluid between 
x and (x + dx) must equal the change in contained volume of that section 
of the cylinder. 

Inflow at (x) = w r 2  d t  at 
Outflow at (x + dx) = - n ( r 4 2 dx)' ( a(x. at + a x  a& dx)dt 

The term containing a " / a x  is neglected because of assumption (5). The net 
change in fluid volume is then - mrl ( 'Xa*).This must equal the change in 
contained volume 

dx [ ~ ( r +  $$ dt)= - n r 2 ]  = 2nr  a d x d t  a t  
The continuity equation is then 

or 

to first order, 

2, - a a2u 
at - - - -  2 axat 

Eliminating aw/at between Eqs. (3-2) and (3-3) 

JL = - I -  hE JJU 
a t  ea axa;t 

Differentiating Eq. (3-4) with respect to t and Eq. (3-1) with respect to x, 
and substituting Eq. (3-4) into Eq. (3-1): 

(3 -3) 

(3-4) 

(3 -5) 

This is a wave equation, e,, = c2pxx, so pressure fluctuations are propagated 
with speed 
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B. Fluid-Filled Torus Model of Membranous Canal 
The Moens-Korteweg derivation is now to be extended to a torus. The 

assumptions are: 

(1) The tube, of equilibrium radius a and thickness h , is bent so its axis 
becomes a circle of radius b . 

(2) The tube contains incompressible, inviscid fluid; the tube itself is massless 
and has no shear rigidity. 

(3) Fluid pressure and velocity are zero at equilibrium. 
(4) The tube wall and the fluid are permitted to move in three directions: radially 

in the z = 0 plane; radially toward and away from the tube axis in a 6' = const 
plane; and along the tube axis in the 8 direction. There is no torsional 
motion or motion of the tube axis out of plane. 

(5) Motions are small so that linearization of the equations is possible. 

Notation: 
U Fluid displacement in 0 direction 
p Fluid density 
E,$ Elastic properties of wall 
S Tension in wall in B direction 
E Wall displacement in B direction 
W 

P 
M 

I 

Wall displacement in radial direction (change of tube radius) 
Displacement of tube axis in R direction 
Bending moment about axis normal to z = 0 plane 
Area moment of inertia of tube about this axis 

The derivation proceeds similarly to the cylindrical case, but is somewhat 
more complex because of the changed geometry. 

Continuity Equation 
Consider a small element of fluid which originally,subtends an angle d 6 . 
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Fig. 3-5 
Continuity Equation 

Fig. 3-6 
Radial Equilibrium 

Original length = b d e  

Change in length = - 1 ( ( b + T ) $ $ d B  s u k  b a 8  de b 

Original volume = n a * b d B 

Final volume = n (a+ w)" [ 5 $ dB + ( b +  r ) d @ ]  

Changeinvolume = wad@[i lawb + a2r+ a a w] au 
For continuity of an incompressible fluid, this volume change must be zero: 

w ,o au 2 b  
%+33+. 

Newton's Laws : 
(a) Radial: Fluid and Tube 

F = ma requires (in cylindrical coordinates): 

or, to first order 

(3-7) 

Since S is neglected and p does not appear if the tube is straight, 
we would then have r = 0. Thus the curvature of the tube presents 
the possibility of a new mode of motion involving flexure. 

(b) Axial: Fluidonly 

or, to first order, 

a= (3-9) b p w = -  ae 
a2u 
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Shear Equation: 

Fig. 3-7 
Shear and Moment , 

Since the fluid is inviscid, and since the shear rigidity of the shell is to 
be neglected, we require a 
the fluid. 

= 0. This assumes no rotatory inertia of 

Hooke's Law: 

Fig. 3-8. Stress Balance Fig. 3-9. Stress-Strain 

We consider the two-dimensional stress-strain equations of an element 

E 

; 6, z ggt p] 

of the tube: 
e+ = l - s z  c ~ + + * G ~ I  c@=& [Ge+$e,l 

From geometry, € 4  5 (averaged over # ) 

z; aC/ae 

so 

(3-loa) 

(3-1 Ob) 

Beam Equation for Toroidal Tube: 
We write the classical equation for the bending of a beam in the form 

- =  P4 K - K ,  
E 1  

where KO is the curvature for zero bending moment and K is the curvature 
corresponding to M. The "beamf1 being considered is the tube, and the curve 
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whose curvature is to be measured is the tube axis. With no displacement, its 
radius is b , so i 

KO = F 
Extending the results of Ref. (l), for the wall of a cylinder, to the axis 

of a torus: 

so 

The area moment of inertia o€ the tube, about the transverse axis, is one-half 
the polar moment: 

2n 
T = i ( r 2 d A r  a 2 h . a d + = n a 3 h  

0 
so 

We now have the seven equations 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

(3-15) 

(3-16) 

(3-17) 

(3-18) 

in the sevenunknowns u ,  w , p , p , S , M ,  e . 
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Before proceeding with the solution, let us consider the special case 
b- - , which represents a straight tube. As  b- - , d 8 4  0 but bd@ 
remains finite and will be denoted by dx. 

and the radial motion . For a straight tube the R direction is indetermin- 
ate, and we might consider constraining the tube axis so it cannot move at all. 
This will be done here, by dropping equation (3-13) and setting 
consequences of allowing such motion will be examined later. We have six 
equations : 

We also must decide what to do about the radial force equation (3-13) 

= 0 , but the 

2 w  at 0 F i a u  2 . aCc b b a *  + - w = -  a a a x  + -  - +  -- 
(3-13) is dropped; (3-14) becomes 

(3-15) is unchanged; (3-16) gives 

(3 -17) becomes 

(3-15) is simply M =  0. 

For a massless tube, 
(3-22) is then 

= 0 ; if there is no initial stretch, S = 0. 

(3-19), (3-20), (3-21), and (3-23) 
equations are easily reduced to: 

9 w  a 0  + a  

(3-19) 

(3-20) 

(3-21) 

(3-22) 

(3-23) 

are four equations in u ,  E, p ,  w . The 

a wave equation with c2 = Eh/2af. If Eq. (3-13) and 
the result would have been c2 = Eh/[ya (2 - 3)  7. 

had been retained, 
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The solution of the set (3-12) to (3-18) proceeds as follows: 
w is eliminated by substituting (3-12) , in  the form 

w a - -  
2 b  

into (3-16) and (3-17). 

S 

p and S as given by these two are substituted into (3-13) and (3-14): 

bp w azu = -  (3-24) 

p and S as given by these two are substituted into (3-13) and (3-14): 

This last becomes 

Eqs. (3-15) and (3-18) give: 

(3-26) 

f i  

(3-24), (3-25), and (3-26) are the final three equations in u, E , and F . 
assume solutions of the form 

We 

where frequency o and wave speed c are parameters. Differentiating 
and substituting, 
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0 0 1 w2 b2 1-- 
c” 

The determinant of the coefficients must be zero for a nontrivial solution 
to exist. This gives 

Solutions are: 0 - 0  

c *  b w  (Dispersive) 

hE (Nondispersive) 

Precise mode shapes can easily be worked out if needed, but it should 
suffice to point out that the mode shapes of the dispersive waves resemble a 
wave on a thin circular rod. The second is a breathing mode resembling the 
Moens-Korteweg motion in a straight tube, with a wave speed differing by a 
factor of (2 - 9 ) due to the extra degree of freedom. 

C. Cylindrical Model of Membranous and Bow Canals 

Next we derive the equations for a flexible cylinder of equilibrium 
radius a inside a rigid cylinder of radius 2“ . The fluid inside the flexible 
cylinder has density pi , pressure pi , and displacement ui ; properties 
of the fluid between the two cylinders are denoted by subscript e . 
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Fig. 3 -10. Elastic Cylinder Inside Rigid Cylinder 

For the inner fluid, we have, from section A , 

- -  a w  a a 2 u ;  
a t  - - -  2 a x '  

and the shell equation (Hooke's Law) is unchanged except that the pressure 
is replaced by the pressure difference 

h E  dw 
i: -- a( pi - Pr 1 

a t  a2 at 

The momentum equation for the outer fluid is easily shown to be analogous 
to that for the inner fluid: 

Finally we need the continuity equation for the outer fluid. 
The volume inflow at x in time dt is 

dV, = n L Y z  - r 2 ( x ) 1  dt 

= n La*" - < a * w ) 2 1  d t  

and the outflow at x + dx is 

r ( x + d x )  = r ( x )  + d x  = a + w  t dx a x  
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To first order, the net inflow dV, - dV' is 

d x  d t  dV = - n ( r " - a 2 )  a IU 

The change in the volume enclosed between the two cylinders is 

dV = c l ~ [ r r ( a ( ~ -  ( r c  $ d t j 2 )  - n ( 8 " - r 2 ) 1  

= d x  C ~ ( ? " ~ - ( a + w +  a ~ d t ) ' ) - n ( 2 ' " - ( a + ~ ) 2 ~  a t  

n d x ( 2 a S  dt) 

Continuity requires the two expressions for dV to be equal: 

We now have five equations in the five unknowns 5, ue, pi, pe, w . 
Using simple algebra, we can reduce the system to the single equation 

This has the form of a wave equation pc+ - c2 pxx , with 

The effects of 7/a and J'e /pi on c2 are easily shown (F'ig. 3-11). 
For a"/a --* 00 , c2 is the same as if the rigid wall did not exist; as ?/a + I, 
C _j 0 . If ye - 0 , the rigid wall obviously has no effect; as ye+ 00 c -B 0 : 

C 

c, 

C 
i 

c, - I -------- ------- - 

c1= speed without rigid wall 1 V a  

Fig. 3-11. Behavior of Wave Speed With % andye 
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To study the simultaneous variation of $/a and ye , we rewrite 

hE 1 c' -- - 2 a  

= k ,  wehave se 
w- 1. I.€ 

C 2  = hE 
2ia(fi t k )  

compared with 

for no rigid wall. 

D. Toroidal Model of Membranous and Bony Canals 

R 

Fig. 3-12. Elastic Toroid Inside Rigid Toroid 

Finally we derive a Moens-Korteweg type equation for a toroidal shell 
inside a rigid toroidal wall. In equilibrium the axes of the two tubes coincide; 
the elastic tube has radius a, the rigid tube . The subscripts i and e 
are now used to indicate internal and external quantities, such as u, f , and p . 
Other notation is unchanged. 

The first major modification to the equations of motion is the continuity 
of the external fluid. A s  in deriving the equation of continuity of the internal 
fluid, let 
external fluid, and do* the angle after displacement. The original volume 
is n ( F f - a 2 ) b d e  ;the fimlvolumeis n P L b d B W  - n ( a + ~ ) ~ ( b + p )  de* .  

dB represent the angle originally subtended by an element of 
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Fig. 3-13 
Continuity Equation 

To first order the final volume is 

C n a 2 b + n 3 ' * % e  - t r ( a 2 b + a 2 * e + a 2 . f +  ao 2 a b w ) l d O  

Setting the initial and final volumes equal, 

T 2 -  a' auC = - 
aa ae w -  2 b  T +  7 

The second major change involves the radial force equation. In addition 
to the force required to accelerate the mass of internal fluid, force must be 
applied to displace the external fluid. This "apparent mass" effect is estimated 
using two-dimensional ideal fluid mechanics. 

Fig. 3-14 
Derivation of 

Potential Equation 

Let 4 be the velocity potential of the external fluid. Consider the inner 
tube and fluid to be a solid body of radius a (a + w can be used but the results 
will be the same to first order). The inner tube is to be displaced by an amount 

in the R direction. Angles from this direction are given by OC . 
We wish to solve the Laplace equation 

Subject to the boundary conditions 
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Assume +(R, cu) = R(r) A@). The solution of the Laplace equation is then 
known to be 

R = CllrP + c12r -P 

A = C21 sin p + C22 cos p a  = C2 sin p(cr - ao) 

p = integer 

Then 

-P-i ) - c,, P r  
= A R ' =  A ( C , ,  p r  Q - 1  ar 

which requires cyo = -go", p = 1 (and C2 such that magnitudes are correct). 

Then ac 

1 - 2 2  

- 
4 =  at c o a d ( r + q )  

a2 

This can be checked by differentiation. 
The pressure in the external fluid caused by this motion is calculated 

from the linearized Euler 

Fig. 3-15. Pressure Integration 
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The pressure in the R direction on an element of surface is 

The total force in the R direction on an element d 8  is 

The complete radial force equation adds this term to the previous (true mass) 
term, with the driving force now due to S and (pi - pe): 

Note that if pt = /oc and 2+00 , the inertia term has doubled (apparent 
mass = 1). 

Newton's Law in the 8 direction now involves two equations: 

Hooke's Law in the + direction now involves pi - pe: 

+ - -  =i-Dz E C" a ""I b a e  
d p r  - p e l  

h 

The shear and moment equations and the 6 component of Hooke's Law 
are unchanged. We then have two additional equations, continuity and axial force 

for the external fluid, and two additional variables, % and pe . Listing all nine 
equations, 

(3-27) 
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(3-28) 

(3-30) 

(3-31) 

(3-32) 

(3-33) 

(3-34) 

(3-35) 

We reduce the system algebraically to four equations in the four unknowns 

pi, Pe, W, a d  3p : 
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Next we substitute the exponential form 

x = x ,  e x p c i  y ( b 8  - c t ) l  

where x = pi, pe, w, or p , into these four equations. We find 

iw b 
X C 

ax 
ae = 

Rewriting the four equations in matrix form gives 

0 

0 

- 
iw iw3b + -  c- 

bC c3 
0 

--a* 2 b  
a - w2 

5 0  
(3-36) 

- 
The frequency equation, obtained by setting the determinant of the 

coefficients equal to zero, is 

Thus 

O f  0 

C w =  'I; 

and 

are  the roots (Fig. 3-16). Surprisingly, as T-, 00 , the last becomes 
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independent of /Ioe, the same results as previously, when there was no exterior 
fluid. Mathematically, this arises in the following way: the apparent mass term, 
which might be expected to reduce the wave speed, is in the fourth term of the 
second row in the matrix above. When the determinant is expanded on the first 
row, the first three terms being zero, only the minor of the fourth term appears. 
This minor, of course, involves no terms from the fourth column except that in 
the first row. Thus the apparent mass term does not appear in the'frequency 
equation. It will, however, affect the mode shapes. 

approaches inftnity, and the wave speed approaches 'zero; we have an incom- 
pressible fluid in a rigid container. 

It might also be noted that, as % 3 1, the apparent mass term 

C c = const. x w 

C =  const. 

Fig. 3-16 
Dispersion Curve for Moens-Korteweg Approximation 

for a Toroid 

Mode shapes are  determined from Eq. (3-36). For instance, we can 
eliminate the second row and transpose the third column: 

1 
bye 

-- 

0 -- ;+e- 
0 - w2 

2b 
a .j w 

1 
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The determinant of the 3 x 3 matrix is 

which is zero when o = c/b ; so the inversion of this matrix is valid only 
on the nondispersive curve c = const, away from the intersection of the two 
modes (see Fig. 3-16). We find 

0 O J  

From - iob ut + - w = 0 wefind iu, = -- zc w 2 b  
C a a 0  

2 a2 2 W and similarly - Zb w - P a -  a a 2 - u , * 0  twb gives i u c = - -  
a a C a P - a a  w 

50 



An analogous method can be used to find the mode shapes for the linearly 
dispersive mode. 

We eliminate the first row from Eq. (3-36) and transpose the last 
column: 

The determinant of the 3 x 3 matrix is zero at 

z E c, Eh P2- a' c 2  = - 
(2-Wa ye a2 (a(" - a') 

as well as at w = 0 and c go . At other values, substituting c = b o  , 

[:] = o"e 
W Eo' 

a ! i  
-- 1 

and 2 i U i  -- - - a b w  

iue= - 2 aeb ,,,, 
a %=-a2 
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E. Cylindrical Model of Membranous and Elastic Bony Canals 
To give some idea of the effects of a bony canal which is not perfectly 

rigid, the analysis of section C is repeated with the outer wall being elastic. 
El and E2 are the moduli of elasticity of the inner and outer walls 

respectively; hl and %’ are their thicknesses; v is the displacement of 
the outer wall in the radial direction. Otherwise the notation is unchanged from 
section C. We can retain the equations 

and the stress-strain equation for the outer wall is clearly 

The continuity equation for the outer fluid is derived by setting the 
difference between inflow and outflow equal to the change in contained volume: 

Inflow = IT L ( Y + ~ ) ~ - ( e + r v ) ~ ] ~  d t  

Outflow = 71 [ ( 8 +  v + av  2 dx) - ( a + v v + h  dXI2] a x  

Linearizing and subtracting, 
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The change in contained volume is 

d V =  d x I : n ( & ' + v t  S d t ) '  - n ( a * ~ + % d f ) ~ ]  - d x [ ~ ( 8 ' + v ) ~ - n ( a c w ) ~ ]  

Elimination of pi, pe, v , and w leaves 

Substituting the exponential forms, 

which can be written as a single equation in ui : 

(3-37) 
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then 

(3-38) 

Thus there are two modes, corresponding very roughly, if hzE2 >> hlE1 , 
to the wave speeds in the inner and outer shells separately. 

F. Conclusions From Moens-Korteweg Type Analysis 
The Moens-Korteweg analysis of toroidal tubes results in two modes of 

Some simple experiments were run, using a water-filled bicycle inner 
tube, either resting on a table, resting on a foam-rubber pad, or immersed in 
water. Pressure transducers were placed inside the tube and pressure waves 
were generated by various means. It was shown that Fig. 3-16 does not fully 
describe the dispersion of waves in a fluid-filled toroidal shell. 

motion, one linearly dispersive and one nondispersive.' 

Thus the full Laplace equation treatment is too complicated to be 
conveniently solved, and the Moens-Korteweg method is too simple to provide 
useful results. It was hoped that a third approach would satis@ both requirements. 
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IV. REFINED ENGINEERING ANALYSIS 

The third approach is similar to that leading to the Moens-Korteweg 
equation. However, it is based on less restrictive assumptions regarding the 
behavior of the shell. The effects of shell mass are included, but the constraints 
on the motion are as before (Fig. 4-1). Shear stresses in the tube are 
considered in the analysis, although the rotatory ineeia is still neglected. 
These changes result in a third mode of the motion appearing, and in significant 
changes in the dispersion curves ( c vs. w ) for the first two modes. 

A. Toroidal Model of Membranous Canal 
1. Derivation a€ Basic Equations 

-.---- 

E 

Fig. 4-1. Elastic Toroidal Shell 

An elastic shell in the shape of a torus has ring radius b , tube radius a ,  
and thickness h . 
the origin. The shell material has density ps , modulus of elasticity E , and 
Poisson's ratio 3 . It is filled with incompressible, inviscid fluid of density yg . 
In a cross-section of the tube at any angle B , a point is located by its distance r 
from the tube axis and angle + (see Fig. 4-1). We assume b >> a >> h . 

B direction and 7 in the R direction. Displacement in the z direction is 
considered to be zero. Fluid displacement in the E direction is UF ; this is con- 
sidered to be constant across the cross-section. The fluid is assumed to move 
with the shell in the R direction. 

The tube axis is a circle in the z = 0 plane with its center at 

The displacement of the centroid of the cross-section is given by in the 
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Distortion of the cross-section from a circle of radius a is indicated 
by displacements u, v, and w of a point on the surface. u is in the 8 

direction, v in the 4 direction, w in the r direction. For this analysis 
we assume &symmetry: u and w are considered to vary with 8 only (thus 
u = at any point) and v is assumed to be zero. 

The stresses inthe shell are fill in the b, direction and 6 2 1  in 
the 8 direction. These are composed of the stresses which exist at the equi- 
librium configuration ( r10 and d 2 0 )  and the stresses due to the perturbations 

( 6 1  and c 2 , *  
The strains due to perturbations, i. e. strains minus equilibrium values, 

are 

These values are then averaged at a cross-section by integrating 
over 6 : 

The stresses in the shell are also averaged over 4 , and the averaged 
values of stress and strain are related by 

Using these averaged stresses, we compute equilibrium of half a cross- 
section of the shell: 
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L T 44 

0: P "I 
Fig. 4-2 

Equilibrium in the + 
Direction 

a;, - 2 h  = p , 2 a  

Fig. 4-3 
Equilibrium in the B 

Direction 

(4-7) 

Here 
Subtracting off the equilibrium values ( Ql0 2h = po 2a), we find 

Ul1 and p1 represent the total stress and transmural pressure. 

2 c , h  = 2 p a  or  6 = a p / h  (4-8) 

C1 and p represent the deviations from equilibrium due to w, , UP, etc. 
Similarly, we compute equilibrium in the 8 direction for half the toms. 

With d 2 1  the total stress in the 8 direction averaged over 4 

2 n a 2 p ,  = 2 ( 2 w a h ) o ' , ,  

Subtracting d f  the eqyilibrium values, 

2 2 w a  p,, = 2(27tah)d,, 

(4-9) 

(4-10) 

we find 

2 n a 2 p  = 4 w a h  6z or &z = - aP (4-11) 
2 h  

The change in curvature of the tube axis due to its deflection $? is 

(4-12) 
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Assuming that plane sections remain plane, the bending moment needed to 
accomplish this is 

M = E I n K  (4-13) 

The area moment of inertia of a cross-section of shell is 

(4-14) ,If 1 = q ( a 4  - (a -h ) ' )  n a 3 h  

so 

(4-15) 

Neglecting the effects of rotatory inertia, the shear Q in the z = 0 plane is 

We now write Newton's Law for the shell-fluid system 

(1) Fluid and shell in ?? direction: 

Q icA[ad2+ % d e  Fig. 4-4 

r( Equilibrium in p 
cz; / d e b  CJ-i and Directions 

(2) Shellonlyin 5 direction 

(4-16) 

(4-17) 
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a2 E or  
2wah~3,b~-  = 2 n a h  -& + &  at 

so 

(3) Fluid only in 5 direction: 

Fig. 4-6 

in 8 Direction 
E de Fluid Equilibrium 

(4-18) 

(4-19) 

Finally we write the continuity equation for the fluid in the tube. In equilibrium, 
a segment of tube of arc length d e  has volume 

Vo = n a 2 b d @  

After deformations and w its volume becomes (note that motion has 

no effect on the volume in dB ) 

v, = w ( a + w ) 2 ( b + r ) d Q  = 7 1 ( a 2 b + 2 a w b + a 2 r ) d @  

This change in volume must be accompanied by a net inflow of fluid of volume 
v1- vo . 

o r  
3U 2 b  r + y w c - - r  ai9 = o  (4-20)* 

* Note that this derivation follows the procedure of observing the volume of fluid 
which flows into a fixed d e  . The derivation in Chapter 111 observes the change 
in subtended angle d e  of a fixed volume of fluid. 
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W e  combine (4-3), (4-4), (4-5), (4-6), (4-8), and (4-11) to get the two 
equations 

(4-21) 

(4-22) 

We substitute these equations and the shear equation (4-16) into the three 
equations of motion (4-17, (4-18), and (4-19): 

(4-24) 

These three, together with the continuity equation 

2b aK F +  - w +  - F = O  
a 3 9  

(4-25) 

(4-26) 

are four linear, homogeneous partial differential equations for r , If , w , 
and uF as functions of 8 and t . (Note that u does not appear; therefore 
the subscript on UF can be dropped without ambiguity. ) 
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As in Chapter III, solutions of exponential form are assumed: 

where L = 2 n b  , ?t is wavelength, and o is frequency. (Here the equations 
will be in terms of CJ and h instead of o and c .) Substituting into (4-23) 

= o  to (4-26) gives i L  

and rewriting the above equations in matrix form we have: - 
1 0 2 

- 
f 

2D- 1 0 L (2- 9) 

(4-27) 
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These equations can be solved for characteristic frequencies, wave- 
lengths, and wave speeds, as well as for mode shapes. The parameters 
appearing are 7 ,  9 , 
addition to , , w, and u ). Dimensionless wave speed E = =/cP is 
easily seen to be o/i LJh) . 

we make the biologically realistic and justifiable approximations 7 = 1 

3 = 1/2. 7 = 1 means that the density of the fluid and tube material are the 
sarne; '2, = 1/2 means t b t  the tube material is incompressible. 

h/a , and a/b ; the variables are Z and L/A (in 

- 

To reduce the number of parameters which appear in a numerical solution, 
and 

L 
h 
c 1 0 2 

(4-2 8) 

The frequency equation is obtained by observing that, for a nontrivial 
solution to exist, the determinant of the coefficients must be zero. After some 
manipulation, the determinant is reduced to: 

(4-2 9) 
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This polynomial is third order in ZS and fourth order in (L/ h )2 , 
so the most convenient method of solution is to assume a value of L/ h , work 
out the coefficients of the polynomial in 5 2, and solve (numerically) for the 
three roots. E is calculated from ZZ and L / h  . 

(L/ A ), by using Eqs. (4-28). We can drop one of the four equations - say the 

last - and solve for three of the variables r , G ,  
For example: 

Mode shapes are found, for each of the three values of Cij at each 

w , u in terms of the fourth. 

- 2 b  L- 
a T  

I 3r+ 0 0  

Inverting the 3 x 3 matrix, we find its determinant is $ ( k)3 , 
which is normally not zero, so the form 

- - 

(4-31) 

is generally valid for determining mode shapes. 23 and L / h  must, of course, 
satis$ Eq. (4-29). 

Before discussing specific results of the above work, it will be worthwhile 
to examine some general properties of the equations. 

One point of interest would be cutoff frequencies (frequencies at which 
wave speeds become infinite). From equation (4-28), if L/X = 0 (infinite 
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wavelength), it is easily seen that the frequency equation becomes 

which has the solutions 

The non-zero solution yields E = /(L/ ‘h ) infinite, so this is a 
cutoff frequency, 

Some properties of the mode shapes can be found from Eq, (4-31). We 
know that the 3 x 3 matrix is nonsingular - its inverse is in Eq. (4-30) - so the 
vector [ i , w , iu] can be zero only if the right-hand side is zero. Since the 
first element of the right-hand side is constant, the vector can be zero only if 
the multiplier, p , is zero. Thus, if 
cannot all be zero, 

remains finite, the other three variables 

Further, no element of the vector [ i e , w , iu] can be infinite unless at 
least one of the elements on the right-hand side of Eq.(4-31) is infinite. This 
clearly cannot happen unless L/ A is zero or infinite. 

Finally it should be noted that L / h  = 1 can be seen to be an important 
transition point in both Eqs. (4-29) and (4-31). Physically, this represents a 
wavelength equal to the circumference of the tube. If we are considering a closed 
tube, wavelengths larger than this need not be considered. In fact, only 
L/ A = integer can exist (see section B3). However, if the tube is less than a 
full circle, or if it is a helix or spiral so more than a full circle can exist, other 
values of L / h  are permitted. 

2. Dispersion Curves and Mode Shapes 
Eq. (4-29) is solved numerically, for fixed values of the parameters a/b 

and h/a , by assuming successive values for (L/ h ) and solving the resulting 
third-order polynomial in 5 ’. A plot of E vs. Z;j is more useful than 
L/h vs.23 , so E = “ / ( L / A )  is computed. 

Plots of the dispersion curves ( .1: vs. i5 ) (Figs. 4-7 to 4-14) are 
included for: - a/b 

.02 
* 02 
.l 
.1 
.05  

- h/a 
.02 * 

. 1  

.02 

.1  

.06 
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The three modes are named after the types of motion they represent. 
The high-speed mode is asymptotic to E = 1 (c = cp), the speed of a stress 
wave in the wall material. The mode is referred to as extensional (E). 

The two lower-speed modes appear to cross each other; however, very 
detailed and carehl  investigation of this region shows that the two curves do not 
intersect. There is a saddle point in the region of closest approach, but there 
is no double root of Eq. (4-29). The mode shapes, as will be shown in the next 
section, change rapidly in this region. 

To the left of the saddle point, the higher-speed of the two modes 
represents a breathing motion; to the right it is a flexural motion of the tube in 
the z = 0 plane. This mode is referred to as breathing-flexure (B-F). The 
lowest-speed mode has these two types of motion in reverse order and is referred 
to as flexure-breathing (F-B) . 

almost independent o€ a/b if, as assumed, a/b << 1 . The classical Moens- 
Korteweg wave for a straight tube (a/b = 0) gives c2 = Eh/2ya ; normalizing 
with c t  = E Y ( 1 - Q 2 )  we find 

The speed of the breathing portion of these two modes is seen to be 

'=% h ( i -S2 )  Z 0.375 h or  F r .613,@ 

for h/a = .02 and .l, we find E 2 .0867 and .194 respectively. These are 
seen to be very close to the breathing modes on the dispersion curves. 

The presence of a cuto€f frequency in the extensional mode has already 
been mentioned. The breathing mode appears to increase in speed continuously 
as L/h -+ 0 , but numerical difJ5culties have prevented precise determination. 
The flexural mode has the most unexpected behavior. This mode has Zi j  = i5 = 0 

at L/A = 1 (rigid body motion), and assumes the indicated parabolic shape for 
L/A > 1. For L/A < 1 (which can exist for a spiral or helical tube), it traces 
a very small half-open curve and then returns to ZZ = 0 at finite, though small, 
c . 
of the curve; it may be that any flexural motion at such wavelengths would be too 
small to be seen, and the curve is merely a mathematical oddity of the frequency 
equation (Fig. 4-14). 

- It has not been possible to ascribe any physical significance to this portion 

Mode shapes are obtained for ZE 1 by assuming given values for 

65 



h/a and a/b and substituting a solution of Eq. (4-29), L/x 
Eq. (4-31). 
values (i e, w, iu) produced by Eq. (4-31) represent the shape of the mode. 

similarly for iu. w is in phase or 180" out of phase with p depending as 
w > 0 or w < 0. fp , of course, is an arbitrary reference oscillation with 
frequency Es . The relative amplitudes of 8 , w ,  and u to are given 

For each value of L / h  there are three s 

If i 6 > 0 , leads t by 90"; if i < 0 , f lags $? , and 

by l i b j l ,  l w l  Y and l i u l  
From the plots of the mode shapes, we can see that, in the flexure 

region of both low-speed modes, 
to 4-18). Thus the motion consists primarily of oscillation of the tube axis in 
the z = 0 plane about its equilibrium location. 

The breathing motion is different at low and high frequencies. At high 
frequencies, w and u are dominant, % is secondary, and p is insig- 
nificant. This type of motion would normally be considered a breathing mode 
(Fig. 4-15). At moderately low frequencies, u is large, w and 5 are 
smaller, and 
the analysis predicts peculiar behavior for both breathing and flexure modes. 
(Figs. 4-15 and 4-17.) 

along any one mode is quite rapid. This means that, for experimental measure- 
ment of mode shapes at frequencies near the saddle point, the input sine wave 
must be very precise. However, it also means that the range of frequencies 
which are not clearly either breathing or flexure is very small. 

dominates the other quantities (Figs. 4-15 

7 is smallest but noticeable. At very low frequencies (L/h < l), 

The transition between breathing and flexure near the saddle point 

The extensional mode is dominated throughout by 'E, , which is 
orders of magnitude larger than any other component. The mode thus consists 
mainly of a stress wave in the elastic shell, propagating at its natural 
velocity, cp . 

The straight-line mode shapes seem to be, approximately, 

(actually the h/a coefficient varies from 5.2 to 6.8) 
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B. Toroidal Model of Membranous and Bony Canals 

1. Derivation of Basic Equations 

Fig. 4-19. Elastic Toroidal Shell Inside Rigid Wall 

We next extend the derivation of section A to the case where the 
elastic shell is enclosed within a rigid wall of tube radius a" . The 
pressure, density, and displacement of the fluids are denoted by p , p  , and 
u , with subscripts i for inside the shell and e for between the shell and 
the wall. Most of the equations from section A can be carried over; the 
changes are: 

In the elastic equations (4-7) through (4-11) the pressure p must be 

In the p force equation (4-17) p must be replaced by pi - Pe , 
replaced by the pressure difference pi - pe. 

and the apparent mass term of Chapter III (D) must be included. The equation 
becomes 

= - 3Q - 2 w a h  + n a  2 ( p i  - pel ae 

Two new equations are needed for the two new unknowns U e  and pe. 
They are continuity and momentum equations for the outer fluid. The momentum 
equation is the same as for the interior fluid: 
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The continuity equation requires the inflow of fluid to be equal to 
the change in contained volume: 

Fig. 4-20. Continuity Equation 

Fluid volume inflow = - fl[ 8'- ( a +  w)'] de 

Original contained volume = 7( ( Y'- a' ) b d 8  

Finalcontainedvolume = n r 2 b d 8  - . r r ( a + W ) P ( . b + F ) j @  

* 8"bdB - * ( a " b  + 2 a w b +  a2J?)dQ 

A V =  - 7 1 ( 2 a w b + a 2 r ) d t 9  

Continuity requires 

The equations to be considered are then 
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* o  Pe-a2  a~~ P C  - 
a" ae 

(4-32) 

(4-33) 

(4-34) 

(4-35) 

(4-36) 

(4-37) 

(4-38) 

(4-39) 

(4-40) 

Combining (4-34) and (4-35), and differentiating and substituting (4-38), 
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Substituting (4-39) and (4-40) into (4-37) ) 

The exponential form x = xo exp (i(L/a B - i w t )  is substituted 
into the five remaining equations, yielding 

2cuj + e +  *b, =I 0 
h a 

2 E 
The parameters 

and f =FJ/! are substituted. 
c p  * p m  , 5 -- b m b p )  7 p-pJ/3s , 

i p , + $ ? +  L Z W ' O  2 
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+[ -2+z j2C=(+)2]~  a - *+i+Qw=o 
and ue are removed by substituting the first two equations into 

the last three: 
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To obtain specific results, we consider the case 9 = 1/2,7 = f = 1. 

.) Rewriting in matrix form, - 8' a' - (Note I+ F'- a'L y'?.-=Z 

h/a 
Y7L i (4-44) 

The €requency equation is obtained by setting the determinant of the 
coefficients equal to zero. 

0 I 

After some manipulation, 

2(+)=-2az 

0 

L 
A 
_I 

- 0  

(4-45) 
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This equation, as before, is solved numerically. Values of L/'A are 

Again, there are generally three solutions F for each L/it or a. 
assumed and the solutions 0 are found. F = t3 / (L/ X ) is computed. 

Thus there are three linearly independent modes of motion. 
A cutoff frequency exists in this case also; this time it is at 

Mode shapes are calculated as previously: 

2 a h  
3 h L  
- - -  

O 1  

3 a 2 h  L 2  La- q*+ &)- &) &) [(TI 

and, from the original equations, 

r+*w iu, = - 
L / A  

Note that the expressions for mode shapes again remain finite as long 
as A is finite. 

2. Dispersion Curves and Mode Shapes 

The parameter r/a enters the equations for the case described in 
section B1. Its effects on wave speed are seen to be small for moderate 
The speed of the breathing wave is lowered slightly (but is drastically lowered 

$/a . 
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for f /a + 1 ) ; the speed of the flexure wave is lowered somewhat more, 
thus having the effect of moving the saddle point to a higher frequency. The 
extensional wave speed does not appear to change significantly (Figs. 4-21 to 4-24). 

The mode shape curves also retain their general behavior, but small 
changes in slopes, peak values, and peak frequencies can be observed. It might 
be noted that, in the breathing part of the F-B mode, while i 6 , w, and iui 
all increase rapidly, the ratios w/ i e and especially iui/iF remain nearly 
constant pigs. 4-25 to 4-27). 

by nearly-constant amplitudes of e, w , and ui , but rapidly decreasing cf . 
The dispersion curves and mode shapes were run out to very high fre- 

quencies to determine whether the speed of the flexural mode continued to increase, 
and, if so, whether it intersected the extensional mode. It was found (Fig. 4-28) 
that the flexural and extensional modes "intersect" in exactly the same way as the 
breathing and flexure modes do at lower frequency: there is no crossover, but 
there is a saddle point, and near it the mode shapes along the dispersion curves 

This indicates that the high-frequency breathing motion is characterized 

change very rapidly. If we trace the three dispersion curves, one is flexural at 
low frequencies and breathing elsewhere; the second is breathing at low, flexural 
at intermediate, and extensional at high frequencies; the third is extensional at 
low and intermediate, and flexural at high frequencies. 

flexural modes, the magnitude of in the extensional mode drops off from its 
straight line increase and reaches the very low value of a breathing mode. The 
flexural mode includes a rapid increase in the other variables with respect to 
notably a tremendous increase in There are reversals of sign with respect 
to f in the two modes, just as at the lower frequency "intersection"(Fig. 4-29). 

As frequency increases toward the '5ntersection!' of the extensional and 

, 
. 

3. Free Vibration of the Simple Closed Toroid 
The dispersion curves and mode shapes have been considered, up to now, 

as continuous spectra, valid for all frequencies. While this is the proper interpre- 
tation for the general case of a torus of indeterminate or infinite length, the special 
case of the simple closed torus should be considered. 

in 6 with a period of 2 * . We must then restrict the wavelengths of all motions 
to be integral fractions of L E 2 7 b. That is, we now have a discrete spectrum 

This situation imposes the condition that all properties must be periodic 
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of wavelengths A I  = L 

2 2  = L/2 

1 3  = L/3 

etc. 
frequencies: 

For each mode, we then have a corresponding sequence of permissible 

Mode I 

Mode 11 

Mode III w 1  (3) , w 2 ( 3 ) 9  w 3  (3) , . . . 

where the superscript represents the mode number and the subscript equals the 
subscript on the corresponding wavelength. 

In the scheme of computation used here, h is the independent value 
in the numerical solution, and the required frequencies and mode shapes are 
determined simply by using = L/n as inputs. If 
by other methods, we note that constant values of 1 
lines through the origin on the dispersion curves: 

so 
- const h = const -. + c = - L 

the curves were generated 
correspond to straight 

The constant corresponding to the desired h is inserted and the 
line is drawn. The intersection of this line with the jth mode’s dispersion curve 
occurs at no). From the mode shape curve for the jth mode at this frequency, 
the quantities i qn@ wn(j), and iun(j) are read. 

We then apply the theorems of Fourier series to the system to find the 
coefficients associated with each wavelength h . 

The notation x - x, e ‘Le/h used in Chapters 111 and IV is 
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an abbreviation for one term of the full series 

h where a. is the complex conjugate of a. . The form is equivalent to the 
classical solution of the wave equation 

J J 

go 

x j 3 1  x[sj c o s ( j e - w j t ) + ~ ~ s i n ( j 8 - o j t )  

+ ~d cos ( je+ojt) + ai sin(je+ wjt) 1 
since L/ h = L/ (L/j ) = j . The notation can be made more compact: 

where o = - G U - ~  and 

Using this form, we express the variables , e, w, and u as 
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The q k  and bjk are determined by applying appropriate initial 
conditions to the variables and their rates. The presence of the three modes 
in the solution indicates that three linearly independent types of motion can exist 
simultaneously at each permitted wavelength A 
a j(k), k = 1,2,3. Thus the initial conditions must specify values for three 
(independent) variables and their rates at t = 0. 

each with its own frequency 
j ’  

Let 

The series expansions for the variables are solved for the coefficients 
by the conventional method of multiplying by conjugate exponentials, integrating 
over 8 , and using the orthogonality relations. We find: 

dB = io f,(tf)cos ne d e  + 
en 2- 2n ni8 1, f,(d e {(e) sin n e  de 
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Similar equations are found for f2, g2, f3, and g3 . Then, for 
each value of n, we have six equations involving the real and imaginary parts 

Of a n 1 9  

between 
bnl, w, b&, w, and bn3 , by making use of the relations 

w (k) and w (k) , etc. a and a-nj, nj n -n 

C. Related Experimental Work 

Experiments conducted by Mr. William C. Van Buskirk, of Stanford's 
Biomechanics Laboratory, have confirmed the existence of the three modes of 
motion described above, and have verified the general shape of the dispersion 
curves (Ref. 9). His work will be reported completely in a subsequent dissertation 
but it might be appropriate to present some preliminary results at this time. 

Fig. 4-30 shows the experimental apparatus used. A water-filled 
bicycle inner tube is softly suspended within half of a plastic toroidal shell. 
Additional water-filled tubes are attached to the end of the primary tube to absorb 
reflections. Pressure within the tube is controlled by varying the level of water 
in the inlet tubes. Waves are generated by applying the illustrated vibrator to the 
end or side of the tube, or by oscillating a plastic clamp, which fits around 
the tube at one cross-section, in the axial or radial direction ( 8 or R direction 
in Fig. 2-2). Two measurement systems were used: shown in the figure are 
pressure transducers which are inserted into the tube; also used were electro- 
optical trackers which measure the displacement of the tube surface. In both 
cases, the wave speed was computed from the phase difference between the 
sinusoids recorded at two points. 

Fig. 4-31 compares the experimental dispersion data with the theory 
of section A (no rigid wall). The relative nondispersiveness of two modes, and 
the normal dispersiveness of the third, are confirmed. The accuracy of 10 to 
20% in the moderately low frequency range of the breathing and flexure modes is 
all that should be expected in view of the approximations in the analysis. 
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V. CONCLUSION 

A s  was mentioned in the Introduction, this work represents only a 
first step in studying the semicircular canals. Before a quantitative under- 
standing of the behavior of the canals can be achieved, we will have to go far 
beyond this approximate study of free vibrations of a single, isolated elastic 
toroid inside a rigid channel. It would also be desirable to have experimental 
confirmation of the increasing accuracy of the successive approximate models, 
as well as precise measurements of the mechanical behavtor of the organ itself. 

Of course, the present work may lead to results in other areas besides 
the one directly intended. For example, a stue of the behavior of the aortic 
arch would proceed by refining the current analysis to consider nonlinear pulse 
propagation, nonisotropic and pressure-varying elastic properties, and the 
effects of the surrounding elastic tissues. Here again, experimental models 
and in vivo measurements are  necessary for a complete study. 

We can conclude, on the basis of the agreement between the theory of 
Chapter IV and the relevant experiments, that the decision to use simplified 
equations of motion, rather than numerical solution of the potential flow equa- 
tions of Chapter II, has been amply justified. The approximate theory developed 
here should help to provide an understanding of the mechanical behavior of fluid- 
filled toroidal shells. 
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